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Abstract--The patldines around oblate and prulate spheroids freely rotating in shear flow according to 
Jeffery's equations have been calculated numerically. When the spheroid is aligned with the vorticity axis, 
open and closed patldines exist separated by a surface of limiting pathlines. This is very similar to pathlines 
around spheres and similarly aligned (infinite) cylinders. For spheroids with an arbitrary orientation, four 
kinds of pathfine exist: (i) closed pathlines: (ii) open (single pass) pethllnes; (iii) transient orbits; and (iv) 
permanent non-closed orbits. In general the permanent (closed and non-closed) orbits are separated from 
the open patldines by a region occupied by transient orbits. 

The relevance of pathlines around spheroids to problems of heat and mass transfer and particle 
deposition in flowing sels is discussed. 

1. INTRODUCTION 
Motion of small particles in the neighborhood of larger ones occurs in a variety of systems 
relevant to industry and medical sciences. Examples are the motion of fillers and fines particles 
near pulp fibers in papermaking, the motion of mineral fines near air bubbles in flotation and the 
motion of platelets near erythrocytes in bloodflow. Most of the theoretical literature on the 
motion and interactions between particles in flowing systems deals with spherical particles 
because they are relatively easy to treat mathematically. Often, in real systems, particles have 
shapes which may differ appreciably from spherical ones and it is of interest to know what 
effect the shape of particles has on particle hydrodynamic interactions, especially with respect 
to orthokinetic coagulation. 

The behavior of two sphere interactions in simple shear flow is now well understood, both in 
the presence and absence of colloidal interparticle forces. For details the reader is referred to a 
recent review by van de Ven (1981). The motion of two spheres in shear flow is known for any 
radius ratio q of the two spheres; when q = 0 and the size of one sphere is negligible with 
respect to the other, the problem reduces to that of finding the streamlines around a single 
sphere, a problem solved by Cox et al. (1968); When q = 1 both spheres have equal size and the 
motion of the spheres is described by a variety of workers (see Arp & Mason 1977, Batchelor & 
Green 1972). Qualitatively, the trajectories of spheres around a central reference sphere are 
very similar to the streamlines around a sphere for all values of q. The main difference between 
the trajectories of various size spheres is the distance of closest approach of two particles on a 
limiting trajectory in the equatorial plane, i.e. a trajectory which separates the open, separating 
trajectories, from the closed ones. From the data presented by Adler 0981), it can be shown 
that for q < 0.1 trajectories of spheres differ from streamlines by less than a few percent. 
Hence the motion of small particles can conveniently be described by streamlines (or for 
non-steady flows more generally by pathlines) without too much error. 

In order to investigate the effect of particle shape on the motion of particles in shear flow, 
we studied the pathlines around oblate (disk-like) and prolate (rod-like) spheroids freely rotating 
in a simple shear flow. Analogous to the motion of spheres it is to be expected that such 
pathlines also accurately describe the trajectories of particles of diameter smaller than about 
10~ of the minor axis of the spheroid. Furthermore it is to be expected that the motion of 
larger particles will be qualitatively very similar and thus the description of such pathlines 
provides a framework for speculating about such motions as well. 
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The flow around a spheroid with a specified (arbitrary) orientation in a simple shear flow has 
been given by Jeffery (1922). In this paper we will show how, from Jeffery's solution, the 
pathlines (or trajectories of small particles) around freely rotating spheroids can be found and 
present numerical solutions of the equations. In the limiting cases of a sphere (axis ratio rp --, 1) 
and an infinite cylinder (rp -~ ao) aligned along the vorticity axis, our solutions agree with those 
given by Cox et al. (1968). 

2. THEORY 
The problem of finding the flow field near an ellipsoid arbitrarily oriented in a simple shear 

flow of gradient G has been given by Jeffery (1922). For a spheroid with major semi-axis a and 
minor semi-axes b we will denote the velocity components in particle fixed coordinates 
xi(i -- 1,2, 3) by 

uL = dxJdt*, [1] 

with t* = Gt, O being the rate of shear and t the time. The axis Xm is chosen to coincide with 
the symmetry axis of the spheroids. Expressions for uL can be obtained from Jeffery's 
equations (22)-(24) by setting c = b. Complete expressions are given in the appendix. The 
particle-fixed coordinates x~ can be transformed in space-fixed coordinates x{ by means of the 
matrix a~j: 

x/= aiixj [2] 

(where the summation convention for repeated indices is used), where a 0 is given by 

cos 0 - s in  0 cos O 

ajj -- / sin 0 cos 4' - sin 4' sin 0 + cos 0 cos 4' cos #, 

/ 
\ sin 0 sin 4' cos 4' sin 0 + cos 0 sin 4' cos 0 

x 
- sin 0 sin 0 \ 

/ 
- sin ~ cos 0 -  cos 0 cos 4, sin #1] • 

/ 
cos 0 cos 0 - c o s  0 sin 4, sin 0 /  

[3] 

Here the angles 4', 0 and O are Euler's angles (see figure 1) specifying the orientation of the 
spheroid with respect to the space fixed Cartesian coordinates xj'. 

Figure 1. Particle fixed coordinate system Xf relative to space fixed coordinate system X/. The axis of 
revolution of the spheroid coincides with the Xl-axis. The orientation of the spheroid can be described by 
the Euler angles ~, O, 4a, defined in the following way: (i) rotate space fixed coordinates around XI' by an 
angle 6 to yield Xd, ~2, ~3; (ii) rotate Xl', f~., Y,3 around ~3 by an angle O to yield X,, J?2, £3; (iii) rotate X~, x2 

~3 around Xt by an angle ~ to obt~n X~, X2, X3. 
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The motion of the spheroid in simple shear is described by the following set of equations 
(Jeffery 1922): 

d.__O0 = ~ B sin 20 sin 20 
dr* 

[4a] 

dt* = 2 (I + B cos 2ok) [4b] 

d_~__ I 
dt* - ~ B cos 0 cos 2#5 [4el 

where B = ( r / -  1)/(r 2 + 1), rp being the particle axis ratio oJb. 
In a time interval At* an element of fluid (or a small particle with radius ,~ b) moves by an 

amount u:At* with respect to the spheroid with orientation (0, ~b, 0). In the same time interval 
the spheroid rotates by an amount A0, A~b, A0. To obtain the coordinates with respect to particle 
fixed axes which rotate along with the spheroid, the new position of the fluid element must be 
expressed in terms of this rotating coordinate system. This can be achieved by two simulta- 
neous transformations, first by transforming the position into space fixed coordinate using a# 
evaluated at time t* and subsequently transforming the space fixed coordinates into rotating 
particle fixed coordinates using a# evaluated at t* + At*. As a result the motion of a fluid 
element (material point) with respect to particle fixed coordinates rotating according to 
Jeffery's equations is given by: 

u, = u/ + ~x~ [5] 

where 

~ = a#~i~ [6] 

and where the dot denotes differentiation with respect to the time, i.e. &# -- daj~dt*. The 
components of aij can be found from [3] and [4]. 

Alternatively the transformation from particle fixed coordinates when the spheroid is fixed 
in space to particle fixed coordinates when the spheroid is free to rotate can be expressed as 
(see e.g. Batchelor 1976): 

u = n J - oJ x x [7]  

which is identical to [5] with/3~i given by 

I o,I -o~  
/31j= 3 0 

--  03! 
[8] 

where the o~{s are the spins around the three axes of the spheroid given by 

l ~ol = ~ cos 0 

dO 
a~ = sin O ~-~- sin 0 cos Odt* 
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dO d~b 
m3 - cos 0 ~-~-~ + sin 0 sin 0 dr*" 

It can readily be shown that [6] and [8] are equivalent. 
It should be noted that xj in [1] are the coordinates associated with the fixed position of the 

spheroid while in [5] they specify the position in particle fixed coordinates rotating along with 
the spheroid. 

The solution of [5] yields the pathlines around freely rotating spheroids in particle fixed 
coordinates. Using [2] the solution can be transformed into space fixed coordinates: 

x/(t*)= ao(t*)xl(t*). [9] 

The problem of finding the pathlines around rotating spheroids thus reduces itself to solving [5] 
numerically and transforming the solution into space fixed coordinates using [9]. Results of 
such calculations are presented in the next section. The set of equations [5] together with [4] 
yields a set of six coupled differential equations. Equations [4a] and [4b] can be integrated 
analytically, while [4c] gives rise to an elliptic integral. We found it convenient to integrate [4c] 
together with [5] resulting in a set of four coupled differential equations which were integrated 
numerically using a Runge Kutta method. Results for rp = 1 and rp--o0 (i.e. > 100) were 
checked by comparison with exact solutions given by Cox et al. (1968). 

3. RESULTS AND DISCUSSION 

(a) Spheroids aligned along the vorticity axis 
When the spheroid is aligned with the vorticity axis X/,  i.e. when 0 = 0 °, the pathlines are 

very similar to those around spheres and cylinders described by Cox et aL 0965). In this case 
two kinds of pathline exist, closed ones and open ones, separated by a surface of limiting 
pathlines. Such pathlines are shown schematically in figure 2. We define d~o = d,~,/b as the 
dimensionless minimum distance between the pathline and the surface of the spheroid for a 
given closed orbit (in whatever plane) and d*~, the corresponding dimensionless maximum 
distance. Results of values of d~,  and d*~ for various axis ratio's rp, calculated from [5] and 
[6] are shown in figure 3 for orbits in the X2'X/-plane. For each rfvalue there exists a limiting 
value of d ~  beyond which no closed orbit exists. The limiting value of d ~  for a sphere 
(rp = l) and a cylinder (rp = ®) calculated by Cox et al. (1968) are included in figure 3 as 

ClOoOd potMlao" ~ " L I m # g a ~  pOthllao 

Figure 2. pathtlnes (streamlines) around a sphere or spheroid oriented at 0 = 0 ° (schematic). Two types of 
[x~hline exist: open separal~ ones and closed ones, separated by a limiting pathline. The minimum and 
maximum distance of a closed orbit to the surface of the spheroid are denoted by d~i. and d.m 

respectively, 
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Figure 3. Values of d*-. and d*.. for closed orbits in the eq.atorial plane for various particle axis ratio's 
r r The dashed lilies denote the asymptotic values of d ~  for spheres and cylinders respectively, calculated 

by Cox et al. (1968). 

indicated by the dashed lines. Each curve in figure 3 tends asymptotically to infinity at some 
limiting value of d~,. These limiting values of d~n are the minimum distances of approach of a 
small particle approaching from infinity (in the absence of interparticle forces or Brownian 
motion). At values larger than the limiting value of d ~  only open pathlines exist. 

For a cylinder of infinite length (r e = ®) the orbits are independent of xl', i.e. independent of 
how far a particle is removed from the equatorial plane X2'X{. For a spheroid of finite length 
the values of d 8  and d,~ depend on xl'. Figure 4 shows various cross sections of spheroids 

I 

X, x; 

! 
X2 

Fisure 4. Cross sections of various spheroids sli.m~l alon8 the vortkity axis X,', tosether with the curves 
sq.u'a~1 the r q ~ B  from o p a  and closed patblkses. It Jows that once vp decremes the rqlion of doNd 
orbits p t s  larger. The distance between the limiti~ pathlJ~ at a I/yen value of xI' and the surface of the 

spheroid is denoted by 
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together with the curve which separates the open from the closed pathiines (in the X~'X2' 
plane). It can be seen that for disk-shaped bodies the volume of closed pathlines above the 
particle is relatively much larger than for prolate spheroids. This has direct implications to 
problems of mass or heat transfer to (or from) such particles since in the region where closed 
pathlines exist the convective contribution is expected to be negligible. Consequently the local 
transfer rates decrease significantly and are mainly controlled by conduction or diffusion 
through the region of closed pathlines. Because the extension of the region where the rotational 
motion of fluid occurs increases linearly with the size of the spheroidal particle, it is easy to 
predict that the transfer rates will decrease as the object becomes larger. 

For disks and rods of small rp, the minimum distance between the spheroid and the surface 
separating open from closed orbits is always in the X2'X3'-plane. For prolate spheroids with larger 
rp, this is no longer the case as is evident from figure 5. Here the distance d between limiting 
pathlines and the surface of the spheroid is shown as a function of xl'la. As can be seen from figure 
2, the minimum distance between a pathline and the spheroid always occurs when x3' = O. The 
definition of d is shown in figure 4 for rp = 1.1 where d is shown for a given value x~'. It can be seen 
that for rp < 2, d*( = d/b) always increases with x~'; however at higher rp a minimum appears near 
the top of the spheroid (x~'/a = 1). This result is relevant to studies in orthokinetic coagulation. It is 
known from the study of two sphere interactions in shear flow, that the minimum distance of 
approach d~.  is a very important parameter; if d~,  is small, particles can approach to within 
distances over which colloidal forces are acting and coagulation might result; if d*~ is larl~, the 
particles pass each other at distances where colloidal forces are negligible. It seems logical to 
assume that the efficiency with which fibers (prolate spheroids), oriented at 0 = 0 °, can capture 
small particles is larger at positions where d 8  is minimum, i.e. at the center of the fiber when rp ~ 5 
and at the ends of the fiber when rp ~ 5. However it should be remembered that the number of 
collisions near the center is always larger than near the ends because x2' and thus the velocity is 
larger. 

0.4 

0.3 

d* 
0.2 

0.1 

T 1 T ~ T - -  

i f / /  
rp =1oo ! l / /  ~ -  

1.1 - 

0 . 2 5  0 . 5 0  0 . 7 5  1 . 0 0  1 . 2 5  1 . 5 0  

X;/a 

Fisure 5. The distance d*(= rib) between limit/uS patldines and the surface of the spheroid as a function 
of XI' for various rv(S = 0*). For smnU rp the m|nimum distance occurs at xt' =0,  i.e. at the center of the 

spheroid and at large rp near x~' = a, i.e. near the end. 
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Co) Spheroids arbitrarily oriented 
Pathlines for spheroids not aligned along the vorticity-axis (0 ° < 0 < 90 °) are often very 

different from those when 0 = 0 °. We will distinguish two main types of pathline, each of which 
can be divided into two subclasses. The two main kinds are: (a) open pathlines, characterized 
by the feature that th[y approach from infinity, encounter the spheroid for a limited amount of 
time and separate towards infinity, and (b) permanent orbits which never wander off towards 
infinity. The open pathlines can be divided into two kinds: open single pass pathlines and 
transient orbits. The permanent orbits can be divided into closed and non-closed orbits. We will 
discuss these four kinds of pathline in some detail. 

(i) Single pass pathUnes. They are, of course, the rule when the initial value of x~' or xt' is 
large, similar to the open separating pathlines for spheres and spheroids oriented at 0 = 0 °, in 
which case the open pathIines are symmetric about the X2'-axis. In contrast, the pathiines 
passing by a spheroid rotating with a non-zero orbit constant (i.e. 0 ° < 0 ~< 90 °) are usually not 
symmetric. It is even possible for single pass pathfines to have a loop in their trajectory, 
without orbiting the spheroid. 

(~) Transient orbits. The possibility exists that a small particle arriving from infinity orbits 
the central spheroid n or n + 112 times and subsequently separates either in the same or in the 
opposite direction from which it came. Two examples of transient orbits are shown in figures 
6(a) and (b) for rp = 2 and 0 = 90 °. This type of interaction is impossible for two sphere 
encounters. It is of interest to note that when the pathline disappears in the same direction from 
which it came, the pathline is always symmetric about the X3'-axis (or more generally, the 
X/X3'-plane). It can be seen from the geometry of the flow that pathlines obtained by forward 
integration starting from (x(, x2', x3') and pathiines obtained by backward integration (in time) 
starting from (x/, -xz', x3') are mirror images, reflected in the Xt'X3'-plane. If a pathline cuts 
this plane an odd number of times, the pathline and its mirror image are the same. Pathlines 

i 

a 

1 4 - 

Fi~pu~ 6. Examples of transient orbits in the equatorial plane (0=90') forspheroids of axis ratio v v = 2, 
initially *,-,,ed along the X/-axis (~o = 0). (a) initial conditions: x,'= x2' = 0, x/lfi = 3 (path of approach 
and recession from x3' is symmetric). Co) initial conditions: xl'=0, x//b=0.426, x3'lb= -3.23S. The 
numbers indicate the course the pathline takes wlu~ odJi~ the spheroid. For region 2,7 the positions 
differ by less than the thickness of the line. Notice that here also the pathline is symmetric about the 

X/-axis. One division on the axis corresponds to b/2. 
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disappearing in the opposite direction from which they came cut the plane X,'X3' an even 
number of times. 

(iii) Closed orbits. A closed orbit is possible when a fluid element (or small particle) arrives 
at exactly the same position after n orbits, while in the same time the spheroid executes (m + 1)/2 
rotations (m, n = 1,2, 3, etc.). When n = m = 1 there are two distinct possibilities: (a) the fluid 
element is at the surface of the spheroid and makes an orbit of period T = 27r(rp + r~')lG which 
is closed when 0 = 90°; Co) there exists another closed orbit of period T shown in figure 7 for 
rp = 2, 0 = 90 °. Here the fluid element always stays at the same side of the spheroid. Initially 
when the fluid element is at x3' = 1.38b the spheroid, oriented along the X2'-axis, rotates faster 
than the fluid element; when the spheroid has reached O = &2, its angular velocity has slowed 
down, but the velocity of the fluid element has increased because x2' is .now larger. Hence the 
relative velocity between the fluid element and the spheroid is periodically increasing and 
decreasing. For one specific initial position (when r~ = 2: x3' = 1.38b, x2' = 0) these increases and 
decreases just cancel each other and the orbit is closed. 

The existence of additional closed orbits is difficult to establish numerically: it is usually 
impossible to decide if an initial position is reached again exactly or approximately after n 
orbits around the spheroid. For some trivial pathiines it is possible to prove that closed orbits 
other than n = m = 1 exist, which suggests that others may exist as well. Consider a point at the 
surface of a spheroid oriented at 0-angles other than 0 ° and 90 °. While the spheroid rotates with 
a period T about the vorticity axis Xt', the spheroid also spins around its axis of revolution with 
angular velocity 

oJ~ ~ dt = 2 G cos O. [10] 

The pathline which the point at the surface describes in space will be closed if, after n rotations 
of the spheroid, the spheroid has made exactly m spins (m and n integers). For example, when 
00 = 0 and rp < 1, then after n rotations of the (oblate) spheroid about the vorticity axis, 
integration of [10] using [4] yields 

~, = cK(k)n [11] 

where 

2 ( r /+  I) 
c = rp (C+  I) ~r2, 

X ~ 

i 

Figure 7. Example of closed orbit of period equal to the period of rotation of the spheroid. Axis ratio 
rp = 2, 8= 90 °. The fluid element always stays at the same side of the sphero/d. Initial conditions: 

= O, x2' = O, x3'/b = 1.38. 
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C being the orbit constant (i.e. the value of tan 0 at t = 0); K(k) is the complete elfiptical 
integral of the first kind of modulus k, where 

k = C%/[(1 - r~)l(C 2 + 1)1. 

For the spheroid to execute exactly m spins during n rotations we have 

2~rm = cK(k)n 

or [12] 

m / n = ~  

where ~ = cK/2~. 
A similar integration can be performed when rp > 1 (Anczurowski & Mason 1967). For a 

spheroid with a given value of rp there exist certain values of C for which ~ is a rational 
number and other values for which ~ is irrational. In the former case a solution of [12] exists 
and hence the pathline of the point at the surface becomes closed after n rotations of the 
spheroid. In the latter case [12] has no solutions and the pathline is not closed, although for 
sufficiently large values of m and n the pathline will return arbitrarily close to its initial 
position (an infinite number of times). Such orbits, which are not closed but are contained 
within a finite volume of space, we will call permanent non-closed orbits. 

The question whether there are more closed than non-closed permanent orbits boils down to 
whether there are more rational than irrational numbers. Because there are infinitely more 
irrational than rational numbers (see e.g. Ogilvy & Anderson 1966), non-closed orbits are the 
rule and closed orbits the exception. The latter ones are probably isolated ones and do not 
contribute to the volume of liquid around the spheroid. This is rather different from the 
streamlines around a sphere (in an infinite medium) for which the volume of closed orbits is infinite. 

(iv) Permanent non-closed orbits. From our numerical calculations we found that in some 
cases pathlines continued to orbit the central spheroid apparently without any tendency to 
move closer or further away (on the average) sometimes for up to several hundred rotations. 

d*  
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Figure 8. Apparently permanent non-dosed orbits in the equatorial plane (0 = 90 °) for spheroids of axis 
ratio r v = 2. Plotted is the distance between the position of the ~ element and the surface of the spheroid 

while in orbit around it, as a function of time. Initial conditions: 6o = O, x~' = x2' = O, x3'lb = 1.21. 
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However their orbits were not closed but every one of them was different. This suggests that those 
orbits are permanent non-closed orbits similar to the trivial ones described above. Some of them 
might become closed after a larger number of orbits and others might be degenerate cases of 
pathlines of type (ii), i.e. they could conceivably separate after many orbits. An example of such 
apparently non-closed orbits is given in figure 8 for rp = 2, 0=90 °, 4,0=0 °, x~'= x2' =0, 
x3'/b = 1.21, where the distance (non-dimensionalized by b) between the position of the fluid 
element and the surface of the spheroid is shown as a function of time (non-dimensionalized by the 
period of rotation of the spheroid). Although the variation in distance shows regularities, it can 
clearly be seen that each orbit is different. Such orbits resemble the changes in 0 for a triaxial 
ellipsoid in shear (Harris et al. 1979). 

Pathlines which permanently orbit the spheroid are always contained within a finite amount 
of volume. This is evident from figure 9 where a permanent orbit similar tothe one in figure 8 is 
shown in particle fixed coordinates. It can be clearly seen that the pathlines are contained 
within a finite volume; for the case shown in figure 9 this volume rotates along with the 
spheroid. Again such regions are important with respect to heat (or mass) transfer from such 
particles, as heat cannot be convected away from such places. Probably such regions of 
permanent orbits contain both non-closed and closed orbits, similar to pathlines at the 
spheroid's surface. 

After having described the possible pathlines around freely rotating spheroids, we now 
focus our attention on when and where they occur. When 0 is close to zero or rp close to one, 
most orbits which were previously (i.e. for 0 = 0 or r o = 1) closed now become permanently 
non-closed (or closed after large n),  with each cycle nearly closed. Most open separating 
pathlines which were previously symmetric become slightly asymmetric. The surface of limiting 
streamlines is replaced by a very narrow region of transient orbits. 

In essence the same is true for other values of r o and O, except that the permanent orbits 
become more irregular and the single pass pathlines more asymmetric. An example is given in 
figure 10 for 00 = 30 ° and rp = 2. The figure shows the transition region of transient orbits, with 
the number of orbits N it takes to separate as a function of initial distance d to the spheroid (in 

X, 

X3 

Figure 9. Resions of permanent non-closed orbits, rotating along with the spheroid, shown in pm-ticle-flxed 
coordinate system. The initial orientation of the spheroid of rp =2 was 0= 90", 4o=0 ~. Calculatiom of 

pathlines were started at x~/b = 1.2. 
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Figure 10. Example of transition region consisting of transient orbits for spheroid of r~ = 2 with initial 
orientation 0--30 °, 4~ = 0 °. Plotted are the number of orbits before separating towards infinity, N, as a 
function of the initial distance d (non-dimensionalized by b; d* = d/b) from the surface. The distance d is 
taken along the Xraxis which initially lies in the X,'X='.plane. N= l14+n (n being a positive integer) 
denotes the case of a pathSne going to infinity in file positive X~'-direction. N = 3/4 + n denotes the case 

when the pathline disappears in the opposite direction. 

the X-direction, i.e. the initial positions are located in the Xl'X,'-plane a distance d from the 
spheroid). It can be seen that for d* > 0.275 the pathline separates immediately towards infinity. 
The data seem to suggest that the number of orbits before separating approaches a large value 
at do* ~ 0.245. Unfortunately, due to computer time limitations and numerical round-off errors, 
it is not possible to prove that some value of d,N-*®; nevertheless the fluid element 
trajectories for do* < 0.245 were followed in these series of calculations for up to 50 rotations, 
with no apparent tendency to move away from the rotating spheroid. This suggests that at 
d* < do* orbits of type (iv) exist. At do* < d* < 0.275 transient orbits exist. The transition region 
is rather irregular as seen from the numerous maxima and minima in the curve. This may be 
related to differences in relative velocities of fluid elements and spheroids as d changes. 

Hence qualitatively the situation shows similarities with the streamlines around spheres. 
There we have permanent orbits (closed ones) and open streamlines, separated by a surface of 
limiting streamlines. The pathlines around spheroids at 0~0 ° consist of permanent orbits 
(probably mainly non-closed with isolated closed ones) and open (single pass) pathlines, 
separated by a region of transient orbits. However the various regions are not as well-defined as 
in the case of spheres. Their extension depends on the orientation of the spheroid. All types of 
pathline can pass through the same region of space at different times. 

The existence of permanent orbits around rotating spheroids in the case where O > 0 ° within 
a relatively large region (extending up to 30% of the particle radius) has important implications 
for the prediction of mass and heat transfer rates. Analogous to the previously discussed case 
of O = 0 °, the mechanism of mass (or heat) transfer through the region of circulating fluid 
(permanent orbits) will mainly consist of diffusion (or conduction) with little contribution of 
convection effects. As a result, the mass (or heat) transfer rates are expected to be considerably 
reduced (as compared to a stationary spheroid in a shear flow), especially for larger spheroidal 
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particles and low diffusion coefficients (conductivities) which is the case e.g. for deposition of 
colloidal particles on cellulose fibers. 

4. CONCLUDING REMARKS 

From the data presented above it can be seen that the patldines around rotating oblate or 
prolate spheroids follow, in general, a rather complicated course. We have identified four 
different types of pathline, although this classification is somewhat arbitrary. For example, open 
(single pass) pathlines containing loops could in some instances be rather similar to transient 
orbits; this depends on how big such a loop must be before it can be considered to orbit the 
spheroid. Numerically it is hard to differentiate between permanent non-closed orbits, closed 
orbits (of large n) and transient orbits which separate after many orbits, because the amount of 
computer time becomes prohibitive and the occurrence of small accumulative errors as t*-* Go 
The question whether permanent orbits are non-closed or closed after many orbits is rather 
academic; they can apparently be non-closed for several hundred rotations, which is usually 
much longer than time scales relevant to practical applications or experimental verifications. 
Despite the problems associated with our classification, the distinctions made between various 
pathlines are useful and provide insights into the possible courses pathlines can take. 

It can be expected that small particles (of radius <0.1b) will follow the pathlines rather 
accurately, provided colloidal forces between the particle and the spheroid are absent. At 
present we are extending our calculations to systems in which colloidal forces between the 
particle are acting, in order to study the problem of deposition of small particles on disks and 
rods rotating in shear flow. This will be described in a forthcoming publication. 

It is possible that trajectories of spheres of size comparable to the minor axis of the 
spheroid are qualitatively similar to the pathlines described above, analogous to the qualitative 
similarity between streamlines around single spheres and relative trajectories between equal or 
unequal-sized spheres. For instance, using the traveling microtube technique (Vadas et al. 

1973), we have observed a transient orbit of the type shown in figure 6(a) for the case of a 4/~m 
dia. polystyrene latex sphere making one orbit around a doublet consisting of two such spheres, 
flowing through a capillary tube of about 200/~m dia. This could mean that, here too, we have 
permanent orbits and single pass trajectories, separated by a region of transient orbits. 

It follows from some of our remarks made above that the description of patlflines around 
spheroids is relevant to problems of heat and mass transfer in flowing suspensions of spheroidal 
particles, including the problems related to the deposition of small particles on spheroids 
subjected to shear. It also is a prerequisite for understanding the relative motion of more 
irregularly shaped bodies in simple shear. 
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APPENDIX I 

Flow field near spheroid 
By setting c = b in Jeffery's equations (22)-(24) Oeffery 1922) one obtains: 

u /  = xl{a2ja31 + [3 ' (W-  V) - 2(a + 2/~)A} 

+ x2{a~asl + [YT* - 2(/~ - a)H} 

+ x3{a~a31 + f l ' S -  2(/3 - a)G*} 

2xm P2 [ a .  x2 zl~ x3 z ¢  ] 
L~  ~ {b---r~-~ - { b -T r~ -~ j  [la] 

u / =  x&'2~"32 + ~'T* + 2(/3 - a)H} 

+ x2{a2~a32 + a'U - f l 'W - 2(a + 2~)B*} 

+ xs{a~a32 + a'R} 

2x2P 2 [~ xl 2W _ x320 ] 
- ( b + ~  - (7~~-~" ~ ]  [lb] 

us a = xt{a2tas3 + ~'S- 2(a -/3)G*} 

+ x2{a2~as~ + a'R} 

+ xs{a~a33 + ~' V -  a'U - 2(a + 2fl)C*} 

_ 2_3J.~._P~_ [~+ x?¢ x~O ] 
(b" + ~)A I (a--~-r.~--~-~- (b-~-,c~-~-~]. [lc] 

Here 

= ~  
A 6/3o 

B* = ~"(2a~a32- a~a33)- ao" a21a3, 
6~o'(2ao" + ~o') 

C* = - (A + B*) 
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Also, 

Moreover: 

where 

with 

F = O/22rv33 + Ot2'~Ot32 
80~o'b 2 

G *  = ~23tv31 + 0t21~31 
4~o'(a 2 + b 2) 

H - °/~1~32 + °/22tv31 

40o'(a 2 + b 2) 

R = - 4 F b  z 

S = 2G*(a z + b 2) 

T* = - 2 H ( a  z + b 2) 

U = 2(B* - C*)b z 

V = 2(b2C * - aZA) 

w= - ( u  + v )  

/~ = ~ {R + 4(b z + A)F} + (a z+ AXb z+xlx3 2 2 A){S+2(a +b  +2A)G*} 

XIX2 
+ (a z + AXb2 + A) {T* + 2(a 2 + b 2 + 2A)H} 

0 = U - 2(b 2 + A)(B* - C*) 

17' = V- 2(b z + A)C* + 2(a 2 + A)A 

= W- 2(a 2 + A)A + 2(b 2 + A)B*. 

1 X~ 2 Xs 2 + X~ 2 

A = (b 2 + A)(a 2 + A)u2, 

. - Jfl 2 X,~ 2 + XI 2 
A is the positive root o[ a-,f~+ A + ~ = I. 

f® dA 2 
" =  L ~ = p - s'(a 2 + ~ ) "  

I f. 2 }  o p = ~ ] I a n  s + i f r ° = - b  < 1  

- l l n ( a Z + A ) U 2 + s  i f r p > l  
- s ~ ( a  ~ + ~)~12_ s 

s 2 = [ a ' -  b21. 
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f :  dA 1 a 
/3= ~ = ( b  e+AXa ~+A)~e 2 

a' = f :  dA (a 2 + A)l/2 3~_ 
(b 2 + A)2A = 2s2(b  2 + A) ~ - ~  

/3' = f :  dA = s ~ (a 2 + ~Xb ~ + ~)A 

a'=f  AdA - a '  
(b 2 + ,~)~A =/3 

/~. = f :  AdA = /~,. (a s + ~Xb 2 + A)A a -  

The corresponding integrals with the lower limit of integration replaced by zero are denoted by 
ao, ao', ao', ~ ,  ~ '  and/3o". 
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